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Abstract: The aim of this project is to research the Expectation-Maximization algo-
rithm and learn how it can be used to estimate the maximum likelihood estimate (MLE)
of unknown parameters in a statistical model when the data contains missing values. The
approach iterates through the estimation (E) step, which computes a function for a lower
bound of the likelihood of the observed data, and is followed by the maximization (M) step,
which maximizes that lower bound. model parameters. We implement the EM algorithm
from scratch. A simulation study shows that the EM algorithm is able to the estimate the
unknown parameters, but doesn’t perform well when clusters of data are overlapping. Then,
we show that the EM algorithm had an accuracy of 99.6% on the "Mouse" dataset, which is
a two-dimensional with 490 observations and three gaussian clusters. Lastly, we show that
the results and run-time of our EM algorithm from scratch was similar to that of the built-in
function GaussianMixture from sklearn.mixture.

1 Introduction
The Expectation-Maximization Algorithm is an unsupervised, iterative algorithm that finds the maximum
likelihood estimate of unknown parameters when there are latent (i.e. unobserved) variables in data [1].
The EM algorithm allows us to solve such non-convex problems that commonly arise from non supervised
learning since the latent variables inhibit the computation of the log likelihood. The algorithm iterates
between two steps: the Expectation (E-step) and Maximization (M-step). The E-Step estimates the
missing variables by creating a heuristic of the distribution of the data with a lower bound on the
log likelihood using the current estimates of the parameters. The M-Step optimizes the parameters of
the model by computing the parameters that maximizing the E-step’s expected log likelihood. These
algorithm requires some initial values, and the two steps are iterated alternatively as the M-step is used
for the next step E until the values converge [2]. The EM algorithm has many real life applications in
machine learning that include Natural Language Processing, computer vision and quantitative analysis
of genetics, and image reconstruction for structural engineering [3]. The focus of our project is to explore
how the EM algorithm solves the problem of measuring the maximum likelihood estimates of a statistical
model for the conditions when the latent variables are involved and the data is missing or incomplete by
preforming a simulation study, implementing the algorithm by scratch (in Python), and comparing our
results and the run-time to the built-in function GaussianMixture from sklearn.mixture which estimates
the parameters of a Gaussian mixture distribution using the EM algorithm. The data used to preform
these tasks is the "Mouse" data set. It is a 2 dimensional data set that contains 3 Gaussian clusters and
490 samples of coordinates that are labeled as "Head", "Ear left" or "Ear Right".

2 Proposed Methods

Suppose you have data x̃1, ..., x̃n
iid∼ p(θ) where x̃i = (xi, Zi) with xi being the observed data and Zi

being the missing data. Suppose Zi ∈ {1, 2, ...,K}, such as a cluster label.
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l(θ) = log
n∏

i=1

p(x̃i)

=

n∑
i=1

log p(x̃i) (1)

Since Zi and the distribution of Zi is unknown, computing the maximum likelihood estimate of θ using
equation 1 becomes a non-convex problem, and thus intractable.

2.1 Expectation Maximization Algorithm
The following section is based on a Non-Convex Optimization lecture by Dr. Balasubramanian at UC
Davis [4].

The expectation maximization (EM) algorithm is an iterative algorithm that solves such non-convex
problems that occur as a result of missing data. In each round t, the EM algorithm maximizes the lower
bound on the likelihood l(θ), based on the current guess θ(t). Repeatedly constructing these bounds and
maximizing them eventually leads to convergence to a local maximum. The EM algorithm is based on
maximizing the following bound on the likelihood of the observed data:

l(θ) =

n∑
i=1

log pθ(xi) (2)

=

n∑
i=1

∑
Zi

(qi(Zi)log pθ(xi, Zi)− qi(Zi)log qi(Zi)) (3)

where qi are nonzero distributions. Note that qi(Zi) and log qi(Zi) do not depend on θ, so the term
qi(Zi)log qi(Zi) can be ignored for purposes of maximizing over θ. So we are maximizing the following
with respect to θ:

n∑
i=1

∑
Zi

qi(Zi)log pθ(xi, Zi) (4)

Let

qi(Zi) =
pθ′(xi, Zi)∑
Zi

pθ′(xi, Zi)
(5)

= pθ′(Zi|xi) (6)

The EM Algorithm repeats the following steps:

Step 1 (E Step): Compute pθ(t)(Zi|xi) and the lower bound on the observed likelihood

Q(θ,θ(t)) =

n∑
i=1

∑
Zi

pθ(t)(Zi|xi)log pθ(xi, Zi) (7)

Step 2 (M Step): Maximize the lower bound to update new value θ(t+1)

θ(t+1) = argmax
θ

Q(θ,θ(t)) (8)
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Figure 1 below illustrates the convergence of the EM algorithm. The aim of the EM algorithm is to
maximize the log-likelihood of the observed data. The E step constructs the function Qt and the M step
find the θ(t+1) that maximizes Qt [5]. The algorithm is guaranteed local convergence because with every
iteration, the likelihood is monotone increasing.

Figure 1: Convergence of the EM algorithm [5]

2.2 EM Algorithm for Mixture of Gaussians
The Gaussian mixture model assumes the following:

x ∼ pθ(x) =
K∑

k=1

pθ(Z = k)pθ(x|Z = k) =

K∑
j=1

πkN(x;µk,Σk) (9)

where πk = pθ(Z = k), Z is the latent (hidden) variable, X is normally distributed with mean µ and
covariance Σ, and the unknown parameter θ = {µk,Σk, πk}Kk=1. The goal is to estimate θ given the N
samples x1, ...,xN with the above model 9. We can assign each sample to one of the K Gaussian clusters,
after obtaining an estimate for θ.

The log-likelihood is:

l(θ) =

N∑
n=1

log pθ(xn) (10)

=

N∑
n=1

log
K∑

k=1

πkN(x;µk,Σk) (11)

Let

F(t)
nk = pθ(t)(Zn = k|xn) =

pθ(t)(xn, Zn = k)∑
Zn

pθ(t)(xn, Zn = k′)
=

N(x;µ(t)
k ,Σ

(t)
k )π

(t)
k∑K

k′=1 N(x;µ(t)
k′ ,Σ

(t)
k′ )π

(t)
k′

(12)

The above equation for F(t)
nk follows from equation 5.
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The steps of the EM algorithm are:

E Step:

Q(θ,θ(t)) = Q((π,µ,Σ), (π(t),µ(t),Σ(t))) (13)

=

N∑
n=1

K∑
k=1

F(t)
nklogπkN(x;µk,Σk) (14)

(15)

which follows from equation 7.

M Step:

θ(t+1) = (π(t+1),µ(t+1),Σ(t+1)) = argmaxπ,µ,ΣQ((π,µ,Σ), (π(t),µ(t),Σ(t))) (16)

which follows from equation 8.

The following is the closed form solution to the above maximization problem:

π(t+1) =

N∑
n=1

F(t)
nk/

N∑
n=1

K∑
k′=1

Fnk′ =

N∑
n=1

F(t)
nk/N (17)

µ
(t+1)
k =

N∑
n=1

F(t)
nkxn/

N∑
n=1

F(t)
nk (18)

Σ
(t+1)
k =

N∑
n=1

F(t)
nk(xn − µ

(t+1)
k )(xn − µ

(t+1)
k )T /

N∑
n=1

F(t)
nk (19)

3 Simulation Study
The purpose of conducting a simulation study is to evaluate the performance of our EM algorithm which
was created from the ground up on Python. We are interested in the results of the algorithm when
presented with randomly generated unlabeled data clusters. Our simulation study consists of three ran-
domly generated normal distributions, each with unique means and covariances. We utilized numpy’s
random.normal function which returns drawn samples from the parameterized normal distribution, to
produce the means and covariances of each cluster. These were then inputted into numpy’s multivari-
ate_normal function to generate data from the Gaussian distribution for each cluster. The EM algorithm
was executed on the randomly generated data, returning the likelihoods, scores, and assigned clusters.

The clustering of the EM algorithm is visualized below in Figure 2 along with the original clusters of the
generated data. For the most part, it appears that the EM clustering algorithm performed well, with a
few points were misclassified in the area where the clusters are overlapping. Note the cluster numbers
are different. This is a consequence of clustering algorithms, but we ensured the clusters had the same
color for better visualization purposes. We achieved the color coordination by finding the norm of the
means for each original and generated distribution of each cluster. After finding the norms we rank them
by their size in order to (hopefully) have their ranks synced up. This is assuming the generated data
and the EM parameters are close enough to have close to matching mean norm ranks. An improvement
upon implementation of the color syncronization might come in the form of either comparing the ranks
of individual coordinates norms, or some other way to sort similar distributions.
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Figure 2: Original clusters (left) and clustering result from EM (right) in the simulation study

A confusion matrix (shown below in Figure 3) is used to further evaluate the performance of EM clustering.
The calculated accuracy score of the algorithm is 96.6%, indicating that the model’s accuracy drops when
distributions overlap. There was a total of 10 misclassifed data points. The most difficult cluster for the
EM algorithm was the red cluster, since it overlapped with both the yellow and blue cluster.

Figure 3: Confusion matrix for EM clustering results in the simulation study

A plot of the log-likelihood over time/iteration was produced to observe the convergence of the algorithm.
The first log-likelihood was excluded to better visualize the convergence of the algorithm (the first log-
likelihood is based on EM’s initial guess, which throws off the scaling of the log-likelihood plot). As seen
below, the algorithm appeared to converge after approximately 17 iterations.

Figure 4: Log-Likelihood for every EM iteration in the simulation study
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4 Real Data Analysis

4.1 Applying EM Algorithm to the "Mouse" Dataset
We perform the EM algorithm both by scratch and using built-in functions such as GaussianMixture from
sklearn.mixture. The purpose of building the EM algorithm from scratch and using a built-in function
allows us to gather insight into how the algorithm works in practice, and compare the run-time of our
from scratch algorithm to the built-in to verify we optimized computation time in our code well. We used
Carrasco’s implementation of the EM algorithm from scratch as a starting point [6]. The visualization
below depicts the three clusters within the "Mouse" dataset: “Head”, “Left ear” and “right ear”. To
perform the EM algorithm, we remove the labels of the clusters before training the model on the dataset.
The assumption made in our model is that there are 3 gaussian clusters.

Figure 5: "Mouse" dataset

The trained EM algorithm was executed on the data, returning the likelihoods, scores, and assigned
clusters. A plot of the log-likelihood over time/iteration was produced to observe the convergence of the
algorithm. It can be seen below in Figure 6 that the algorithm converges after about 23 iterations. The
execution time for the training of our model took 0.03 seconds [7].

Figure 6: Log-Likelihood for every EM iteration on the "Mouse" dataset

The scatterplots of the clustering from the EM algorithm are visualized below in Figure 7 along with the
original data clusters from the "mouse" dataset.
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Figure 7: Original clusters (left) and clustering result from EM (right) on the "Mouse" dataset

Figure 8 below shows the gaussian distributions with the estimated maximum likelihood estimates
of the unknown parameters. We can see the variance of the yellow and green clusters are much smaller
than the variance of the blue cluster.

Figure 8: EM result on the "Mouse" dataset for the gaussian distributions for each cluster

A contingency table (shown below in Figure 9) is produced to further evaluate the performance of the
EM clustering. The labeling over the clusters were highly accurate as the only mislabeled values was a
value from “Head” was mislabeled as “Ear right” and one value from “Ear left” was mislabeled as “Head.”
The calculated accuracy score of the algorithm on the "mouse" dataset using our method from scratch
is 99.6 percent, which is highly accurate.
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Figure 9: Confusion matrix for EM clustering results on the "Mouse" dataset

4.2 Gaussian Mixture Modelling (GMM) using sklearn
To compare the results found from building the EM algorithm from scratch, we utilize the built-in func-
tion GaussianMixture from sklearn.mixture. The GMM model assumes the underlying data is generated
from Mixture of Gaussians, which was done by using the GaussianMixture function in Python. We pre-
dict the labels of the "mouse" dataset and plotted the scatterplots of the original dataset in comparison
to the Sklearn EM Clustering algorithm. The clustering in the original appears similar to the clustering
by sklearn. The clustering results from sklearn and our method from scratch is identical. Both methods
show that the model assumptions of a Gaussian Mixture Model hold up in our method by scratch and
using the built-in function. The run-time of the built-in function was about .002 seconds.

Figure 10: Original clusters (left) and clustering result from sklearn’s GaussianMixture function (right)
on the "Mouse" dataset

A contingency table (shown below in Figure 11) is produced to further evaluate the performance of EM
clustering. The labeling over the clusters was highly accurate as the only mislabeled values was a value
from “Head” was mislabeled as “Ear right” and one value from “Ear left” was mislabeled as “Head.” The
calculated accuracy score of the algorithm on the "mouse" dataset using a method from scratch is 99.6
percent, which is highly accurate. When comparing these results to the algorithm by scratch it can be
noted that the values are exactly the same, thus revealing that our algorithm produces the same results
as the built-in functions.
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Figure 11: Confusion matrix for sklearn’s GaussianMixture function clustering results on the "Mouse"
dataset

5 Conclusion
Based on the results, we evaluated that our EM algorithm from scratch was computationally efficient (with
a run-time of about .03 seconds), but not quite as efficient as the built-in function GaussianMixture (with
a run-time of about .002 seconds). Both the from scratch and built-in EM algorithm had an accuracy of
99.6 percent. The clustering results from our from scratch algorithm to the built-in function were identical.
Its important to note these results are specific to the "Mouse" dataset, and the performance of the EM
algorithm may be worse with a different dataset. For example, as we noticed in the simulation study,
the EM algorithm struggles to differentiate overlapping clusters. Overall, we successfully accomplished
all aspects of our project, including learning the theory behind the EM algorithm, determining the
capability performance of the Expectation-Maximization algorithm with a simulation study, implementing
the algorithm in Python from scratch and using a built-in function, and applying it to the "Mouse"
dataset.
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7 Appendix

7.1 Proof of local convergence of the EM algorithm

l(θ(t+1)) ≥
n∑

i=1

∑
Zi

pθ(t)(Zi|xi)log pθ(t+1)(xi, Zi) (20)

≥
n∑

i=1

∑
Zi

pθ(t)(Zi|xi)log pθ(t)(xi, Zi) (21)

= l(θ(t)) (22)

7.2 Derivation of equation 1

l(θ) =

n∑
i=1

log pθ(xi) (23)

=

n∑
i=1

log
∑
Zi

pθ(xi, Zi) (24)

=

n∑
i=1

log
∑
Zi

qi(Zi)
pθ(xi, Zi)

qi(Zi)
(25)

=

n∑
i=1

log Eqi

(
pθ(xi, Zi)

qi(Zi)

)
(26)

≥
n∑

i=1

Eqi

(
log

pθ(xi, Zi)

qi(Zi)

)
(27)

=

n∑
i=1

∑
Zi

qi(Zi)log
pθ(xi, Zi)

qi(Zi)
(28)

=

n∑
i=1

∑
Zi

(qi(Zi)log pθ(xi, Zi)− qi(Zi)log qi(Zi)) (29)

where qi are nonzero distributions. Step (23)-(24) applies the law of total probability. Step (25)-(26)
applies the definition of expectation. Step (26)-(27) applies Jensen’s inequality to the concave function
f(x)=log(x). Step (27)-(28) applies the definition of expectation again. Lastly, step (28)-(29) simplifies
the logarithm.
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7.3 Derivation of equation 6

qi(Zi) =
pθ′(xi, Zi)∑
Zi

pθ′(xi, Zi)

=
pθ′(Zi|xi)pθ′(xi)∑
Zi

pθ′(Zi|xi)pθ′(xi)

=
pθ′(Zi|xi)pθ′(xi)

pθ′(xi)
∑

Zi
pθ′(Zi|xi)

=
pθ′(Zi|xi)∑
Zi

pθ′(Zi|xi)

= pθ′(Zi|xi)

since
∑

Zi
pθ′(Zi|xi)=1.

7.4 Derivation of equation 11

l(θ) =

N∑
n=1

log pθ(xn)

=

N∑
n=1

log
∑
Zn

pθ(xn, Zn)

=

N∑
n=1

log
K∑

k=1

pθ(xn, Zn = k)

=

N∑
n=1

log
K∑

k=1

πkN(x;µk,Σk)

7.5 Python Code
There were not any inverses that needed to be calculated in the EM algorithm that we could try to
optimize, however, we did try to optimize our code by:

1. Saving computations in variables which were reused frequently (especially in the M step)

2. Using matrix multiplication when calculating Σ
(t+1)
k in the M step, instead of a for loop to calculate

the sum.

Unfortunately because of the nature of the EM algorithm, a for loop was unavoidable to execute all
iterations of the EM algorithm. We also could not utilize parallel computing because EM is an iterative
algorithm, so each iteration relies on the previous iteration.

import os
import pandas as pd
import numpy as np
from s c ipy import s t a t s
import matp lo t l i b . pyplot as p l t
from s c ipy . s p e c i a l import logsumexp
import imageio
import matp lo t l i b . animation as ani
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import matp lo t l i b . cm as cmx
import matp lo t l i b . c o l o r s as c o l o r s
import matp lo t l i b . pyplot as p l t
import numpy as np
import seaborn as sns
from matp lo t l i b . patches import E l l i p s e
from PIL import Image
from s k l e a rn import data s e t s
from s k l e a rn . c l u s t e r import KMeans
from s c ipy . s t a t s import mult ivar iate_normal
import s k l e a rn
from s k l e a rn . met r i c s import confusion_matrix
import seaborn as sn
from s k l e a rn . met r i c s import Confus ionMatr ixDisplay
import time
import t ime i t

EM Algorithm

def i n i t i a l i z e_ c l u s t e r s_d (X, num_clusters =3):

#randomly

np . random . seed (1 )

c l u s t e r s = [ ]
for i in range ( num_clusters ) :

c l u s t e r s . append ({
' pi_k ' : np . random . uniform (0 , 1 ) ,
'mu_k ' : np . random . uniform (0 , 1 , s i z e =(2 , ) ) ,
#covar iance matrix has to be p o s i t i v e s em i d e f i n i t e matrix
' cov_k ' : s k l e a rn . da ta s e t s . make_spd_matrix (2 , random_state=1)

})

return c l u s t e r s

Expectat ion Step

#ca l c u l c a t e F_nk
def expectation_step_d (X,N,K, c l u s t e r s ) :

F_nk = np . z e r o s ( (N, K) , dtype=np . f l o a t 6 4 )

#ca l c u l c a t e F_nk f o r each data po in t in each c l u s t e r
for k , c l u s t e r in enumerate( c l u s t e r s ) :

pi_k = c l u s t e r [ ' pi_k ' ]
mu_k = c l u s t e r [ 'mu_k ' ]
cov_k = c l u s t e r [ ' cov_k ' ]

#numerator
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F_nk [ : , k ] = pi_k ∗ mult ivar iate_normal . pdf (X, mean=mu_k, cov=cov_k)

#denominator (sum va lue s in each o f the k rows )
F_n = np .sum(F_nk, 1 ) . reshape ( (N, 1 ) )

F_nk = F_nk/F_n

return F_nk,F_n

Maximization Step

def maximization_step_d (X, N, c l u s t e r s ,F_nk ) :

N = f loat (N)
c lusters_updated = [ ]
c lusters_updated_no_string = [ ]

for k , c l u s t e r in enumerate( c l u s t e r s ) :

#F_nk fo r c l u s t e r k
F_k = F_nk [ : , k ] . reshape ( ( int (N) , 1 ) )

#sum F_k fo r each o f the N samples
N_k = np .sum(F_k)

#c lo s ed form so l u t i o n

pi_k = N_k / N

#sum i s o f a l l N en t r i e s in each column
mu_k = np .sum(F_k ∗ X, ax i s=0) / N_k

d i f f = X − mu_k
#(X^T)X w i l l do the inner product
#( hence the sum in the equat ion )
cov_k = (F_k ∗ d i f f ) .T @ d i f f / N_k

#udpate c l u s t e r s
c lusters_updated . append ({

' pi_k ' : pi_k ,
'mu_k ' : mu_k,
' cov_k ' : cov_k

})
# clusters_updated_no_str ing . append ({
# pi_k ,
# mu_k,
# cov_k
# })

return c lusters_updated

Return l i k e l i h o o d o f our parameters
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def get_l ike l ihood_d (X, c l u s t e r s ,F_nk,F_n) :
l i k e l i h o o d = np .sum(np . l og (F_n) )
return l i k e l i h o o d

Combine Steps to form EM Algorithm

def train_gmm_d(X, n_clusters , n_epochs ) :

#number o f samples in the da t a s e t
N = X. shape [ 0 ]

#randomly i n i t i a l i z e va l u e s f o r the a l gor i thm to have a s t a r t i n g po in t
c l u s t e r s = i n i t i a l i z e_ c l u s t e r s_d (X, n_c lus te r s )

#l i k e l i h o o d va lue we are t r y i n g to maximize
l i k e l i h o o d s = np . z e ro s ( ( n_epochs , ) )

#score o f how l i k e l y a data po in t i s to be from a ce r t a i n c l u s t e r
s c o r e s = np . z e ro s ( (X. shape [ 0 ] , n_c lus te r s ) )

#for each epoch
for i in range ( n_epochs ) :

F_nk,F_n = expectation_step_d (X,N, n_clusters , c l u s t e r s )
c l u s t e r s = maximization_step_d (X, N, c l u s t e r s , F_nk)

l i k e l i h o o d = get_l ike l ihood_d (X, c l u s t e r s ,F_nk,F_n)
l i k e l i h o o d s [ i ] = l i k e l i h o o d

#score s = np . l o g (F_nk)
s c o r e s = F_nk

return c l u s t e r s , l i k e l i h o od s , s c o r e s

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Simulat ion Study with Random generated data set with EM

This code gene ra t e s k number o f random b i v a r i a t e gaus iaan d i s t r i b u t i o n s .
We chose b i v a r i a t e as they are the e a s i e s t mu l t i v a r i a t e d i s t r i b u t i o n s to v i s u a l i z e .

import random
## genera te random p o s i t i v e semi d e f i n i t e matrix
def get_random_psd (n ) :

x = np . random . normal (0 , 1 , s i z e =(n , n ) )
return np . dot (x , x . t ranspose ( ) )

## genera te random p o s i t i v e semi d e f i n i t e matrix , but sma l l e r so our d i s t r i b u t i o n s
## axes are not so d i f f e r n t
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def get_random_psd_smaller (n ) :
x = np . random . normal (0 , 0 . 5 , s i z e =(n , n ) )
return np . dot (x , x . t ranspose ( ) )

def gen_data_2d_2(k ,N, PrintVars=False ) :

#k = number c l u s t e r s
#N = num of obs in each c l u s t e r
#PrintVars = whether to p r i n t out vars , good f o r debugging ,

#d e f u a l t i s not to p r i n t
data =[ ]
N_new=0
N_new_stack=[ ]
mean_list =[ ]
c ov_l i s t =[ ]
for i in range ( k ) :

N_new=N
random_number = np . random . randint (1 , 4 , s i z e =(2))
mean=np . random . normal (0 , 1 , s i z e =(2 ,))+random_number

cov=get_random_psd_smaller (2 )
cov_l i s t . append ( cov )
mean_list . append (mean)
q0 , q1 = np . random . mult ivar iate_normal (mean , cov , N_new) .T
c l u s t e r=np . repeat ( i , N_new)
data . append (np . vstack ( ( q0 , q1 , c l u s t e r ) ) .T)
i f PrintVars==True :

print ( "mean␣ s h i f t : " , random_number , sep="␣" )
print ( "cov␣ o f : " , i , "\n" , cov , sep="␣" )
print ( "mean␣ o f : " , i , "\n" ,mean , sep="␣" )
print ( " s i z e : " ,N_new)
print ( "\n" )

#re turns data as an array wi th 2 qoords and a l a b e l f o r the c l u s t e r
#a l s o re turns covar iance and means as a l i s t f o r v i s u a l i z a t i o n purposes
data=np . vstack (np . asar ray ( data ) )

return data , cov_l i s t , mean_list

Generate data

np . random . seed (2029)

#number o f members o f each c l u s t e r
N=100
#number o f c l u s t e r
k=3
#x i s our generated b i v a r i a t e data , a l s o re tu rns covar iance and mean fo r each
#c l u s t e r
x , cov_l i s t , mean_list=gen_data_2d_2(k ,N)
p l t . f i g u r e ( f i g s i z e =(6 ,6))
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ax=sns . s c a t t e r p l o t ( x [ : , 0 ] , x [ : , 1 ] , hue=x [ : , 2 ] )
ax . s e t_ t i t l e ( " Sca t t e r ␣Plot ␣ o f ␣Generated␣Dataset " )
ax . l egend ( t i t l e=' C lu s t e r s ' )
ax . s e t_x labe l ( " f i r s t ␣ coord ina te " )
ax . s e t_y labe l ( " second␣ coord inate " )

Set parameters for GMM EM tra i n i n g

x_unlabeled = x [ : , 0 : 2 ]
X=x_unlabeled
n_c lus te r s = k
n_epochs = 30 #tuning hyperparameter , which w i l l be d i s cu s s ed in be low

Train EM GMM model on generated data

s t a r t = time . time ( )
c l u s t e r s , l i k e l i h o od s , s c o r e s = train_gmm_d(X, n_clusters , n_epochs )
end=time . time ( )
print ( "Execution ␣Time : " , end−s t a r t )

Function to ex t r a c t cov and mu from generated c l u s t e r s

#our EM algor i thm re turns parameters as l i s t o f d i c t , so we e x t r a c t each element
#of d i c t and append to a l i s t
#t h i s i s done to match the fo rmat t ing o f our data genera t ion func t i on
def get_mu_cov_clusters ( c l u s t e r s ) :

mu_k=[ ]
cov_k=[ ]
l ength=len ( c l u s t e r s )
for k in range ( l ength ) :

mu_k. append ( c l u s t e r s [ k ] [ 'mu_k ' ] )
cov_k . append ( c l u s t e r s [ k ] [ ' cov_k ' ] )

return mu_k, cov_k

Get parameters o f EM output

mu_gen , cov_gen=get_mu_cov_clusters ( c l u s t e r s )

Tune i t e r a t i o n s un t i l convergence .

We found that for 300 points , u sua l l y the l i k e l i h o o d would converge
be f o r e 200 i t e r a t i o n s . For t h i s seed , i t was around 20 i t e r a t i o n s .

p l t . f i g u r e ( f i g s i z e =(5 , 5 ) )
p l t . t i t l e ( 'Log−l i k e l i h o o d ␣ over ␣time , ␣ exc lud ing ␣ f i r s t ␣one ' )
p l t . y l ab e l ( 'Log−Like l ihood ' )
p l t . x l ab e l ( ' I t e r a t i o n ' )
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p l t . p l o t (np . arange (2 , n_epochs + 1) , l i k e l i h o o d s [ 1 : ] )
p l t . show ( )

Dataframe with EM and Or ig ina l c l u s t e r s for each po int .

test_df=pd . DataFrame (X)
test_df . columns=[ ' q0 ' , ' q1 ' ]
te s t_df_scores=pd . DataFrame ( s c o r e s )
test_df = pd . concat ( [ test_df , tes t_df_scores ] , ax i s=1)
#f ind which score i s c l o s e s t to 0
test_df [ 'EM␣ c l u s t e r i n g ' ] = test_df . i l o c [ : , 2 : ] . idxmax ( ax i s=1)
test_df [ " o r i g i n a l ␣ c l u s t e r s "]=x [ : , 2 ]
test_df

Code below i s added to sync c o l o r s o f c l u s t e r s :

Color code each d i s t r i b u t i o n

The idea here i s to f i nd the norm o f the means for each o r i g i n a l and generated
d i s t r i b u t i o n o f each c l u s t e r . After f i nd i n g the norms we rank them by t h e i r
s i z e in order to (HOPEFULLY) have t h e i r ranks synced up . This i s assuming
the generated data and the EM parameters are c l o s e enough to have c l o s e to
matching mean norm ranks . An improvement upon implementation o f the c o l o r
sync ron i z a t i on might come in the form o f e i t h e r comparing the ranks o f
i nd i v i dua l coo rd ina t e s norms , or some other way to s o r t s im i l a r d i s t r i b u t i o n s .

mean_df=[ ]
for k in range ( len ( test_df ) ) :

l2norm=np . l i n a l g . norm(mu_gen [ int ( test_df [ 'EM␣ c l u s t e r i n g ' ] [ k ] ) ] )
mean_df . append ( l2norm )

test_df [ "EM␣mean␣norm"]=np . asar ray (mean_df )

mean_df=[ ]
for k in range ( len ( test_df ) ) :

l2norm=np . l i n a l g . norm(mean_list [ int ( test_df [ ' o r i g i n a l ␣ c l u s t e r s ' ] [ k ] ) ] )
mean_df . append ( l2norm )

test_df [ " o r i g i n a l ␣mean␣norm"]=np . asar ray (mean_df )

#in order to sync co l o r s we f i nd the norms o f the o r i g i n a l and em means and rank
them by t h e i r norms
#we then sync the co l o r to the norm
test_df [ ' o r i g ␣ ranking ' ] = pd . f a c t o r i z e (−test_df [ " o r i g i n a l ␣mean␣norm" ] ,
s o r t=True ) [ 0 ] + 1
test_df [ 'EM␣ ranking ' ] = pd . f a c t o r i z e (−test_df [ "EM␣mean␣norm" ] , s o r t=True ) [ 0 ] + 1
test_df
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Function to draw covar iance e l l i p s e s around on our s c a t t e r p l o t s

def drawbands ( mean_list , cov_l i s t , c o l o r s , axes ) :
i=0
for m, cv , c o l in zip ( mean_list , cov_l i s t , c o l o r s ) :

i f cv . shape == (2 , 2 ) :
U, s , Vt = np . l i n a l g . svd ( cv )
ang le = np . degree s (np . arctan2 (U[ 1 , 0 ] , U[ 0 , 0 ] ) )
width , he ight = 2 ∗ np . sq r t ( s )

else :
ang le = 0
width , he ight = 2 ∗ np . sq r t ( cv )

# Draw the E l l i p s e
for ns i g in range (1 , 4 ) :

axes . add_patch ( E l l i p s e (m, n s i g ∗ width , n s i g ∗ height ,
angle , f c = c o l o r s [ i ] , a lpha = 0.15 ) )

i=i+1

Draw o r i g i n a l and generated d i s t r i b u t i o n s

#sync co lor s , w i l l on ly go up to 5 c l u s t e r s un l e s s more c o l o r s added

c o l o r s = [ ' green ' , ' orange ' , ' red ' , ' b lue ' , ' ye l low ' , " purp le " ]

#co l o r s f o r o r i g i n a l
i n d e x l i s t = np . l i n a l g . norm(mean_list , ax i s=1)
index l i s t 2_o =pd . f a c t o r i z e (− i nd e x l i s t , s o r t=True ) [0 ]+1
sub_array = np . asar ray ( c o l o r s ) [ i ndex l i s t 2_o ]
c o l o r s 2=sub_array . t o l i s t ( )
c o l o r s 2

#co l o r s f o r em
i n d e x l i s t = np . l i n a l g . norm(mu_gen , ax i s=1)
index l i s t 2_e =pd . f a c t o r i z e (− i nd e x l i s t , s o r t=True ) [0 ]+1
sub_array = np . asar ray ( c o l o r s ) [ i ndex l i s t 2_e ]
c o l o r s 3=sub_array . t o l i s t ( )
c o l o r s 3

f i g , axes = p l t . subp lo t s ( nrows=1, nco l s =2, f i g s i z e =(12 , 6 ) )

sns . s c a t t e r p l o t ( ' q0 ' , ' q1 ' , data=test_df , hue=" o r i g ␣ ranking " , hue_order=index l i s t2_o ,
p a l e t t e= co lo r s2 , ax=axes [ 0 ] )
drawbands ( mean_list , cov_l i s t , co l o r s2 , axes [ 0 ] )
axes [ 0 ] . s e t_ t i t l e ( " Or i g i na l ␣Dataset " )

sns . s c a t t e r p l o t ( ' q0 ' , ' q1 ' , data=test_df , hue='EM␣ ranking ' , hue_order=index l i s t2_e ,
p a l e t t e= co lo r s3 , ax=axes [ 1 ] )
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drawbands (mu_gen , cov_gen , co l o r s3 , axes [ 1 ] )
axes [ 1 ] . s e t_ t i t l e ( "EM␣Clus t e r i ng " )
f i g . t ight_layout ( )
#Em ranking corresponds to the c l u s t e r , but a l s o he l p wi th sync ing c o l o r s

#sometimes l a b e l s w i l l d i f f e r , so cont ingency t a b l e may need the l a b e l s to be
#ad ju s t ed .
conf_table = confusion_matrix ( test_df [ " o r i g ␣ ranking " ] , test_df [ 'EM␣ ranking ' ] )
d i sp = Confus ionMatr ixDisplay ( confusion_matrix=conf_table ,
d i sp l ay_ labe l s=index l i s t 2_e )
d i sp . p l o t ( )

num_correct = np .sum(np . d iag ( conf_table ) )
t o t a l = np .sum( conf_table )
accuracy = ( num_correct/ t o t a l )∗100
accuracy

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Apply EM to Mouse Data

Load Data

#se t d i r e c t o r y on your dev i c e
os . chd i r ( "D:\\Documents\\STA141C\\ Fina l " )
#ex t r a c t data from csv in to dataframe ,
mouse_df = pd . read_csv ( "mouse2 . csv " , header=None , comment='#' , sep="␣" , )
mouse_df . columns=[ ' x ' , ' y ' , ' c l u s t e r ' ]
mouse_df

def i n i t i a l i z e_ c l u s t e r s_d (X, num_clusters =3):

#randomly

np . random . seed (1 )

c l u s t e r s = [ ]
for i in range ( num_clusters ) :

c l u s t e r s . append ({
' pi_k ' : np . random . uniform (0 , 1 ) ,
'mu_k ' : np . random . uniform (0 , 1 , s i z e =(2 , ) ) ,
#covar iance matrix has to be p o s i t i v e s em i d e f i n i t e matrix
' cov_k ' : s k l e a rn . da ta s e t s . make_spd_matrix (2 , random_state=1)

})

return c l u s t e r s

sns . s c a t t e r p l o t ( ' x ' , ' y ' , data=mouse_df , hue=' c l u s t e r ' )
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#turn the supe r v i s ed data in to unsuperv i sed ( i . e . remove the c l u s t e r l a b e l s )
mouse_df_unsupervised=mouse_df . i l o c [ : , 0 : 2 ]
x_unlabeled = mouse_df_unsupervised . va lue s
X=x_unlabeled

n_c lus te r s = 3
n_epochs = 50

s t a r t = time . time ( )
c l u s t e r s , l i k e l i h o od s , s c o r e s = train_gmm_d(X, n_clusters , n_epochs=50)
end=time . time ( )
print ( "Execution ␣Time : " , end−s t a r t )

l i k e l i h o o d s [ 1 : ] . shape

p l t . f i g u r e ( f i g s i z e =(5 , 5 ) )
p l t . t i t l e ( 'Log−l i k e l i h o o d ␣ over ␣ time ' )
p l t . y l ab e l ( 'Log−Like l ihood ' )
p l t . x l ab e l ( ' I t e r a t i o n ' )
p l t . p l o t (np . arange (2 , n_epochs + 1) , l i k e l i h o o d s [ 1 : ] )
p l t . show ( )

The EM algor i thm converges a f t e r about 20 i t e r a t i o n s .

mouse_df [ ' 1 ' ] , mouse_df [ ' 2 ' ] , mouse_df [ ' 3 ' ] = s c o r e s .T
#f ind which score i s c l o s e s t to 0
mouse_df [ 'EM␣ c l u s t e r i n g ' ] = mouse_df . i l o c [ : , 3 : 6 ] . idxmax ( ax i s=1)
mouse_df

mouse_df [ "EM␣ c l u s t e r i n g " ] = mouse_df [ "EM␣ c l u s t e r i n g " ] . r ep l a c e ( [ "2" , "1" , "3" ] ,
[ 'Head ' , "Ear_right " , "Ear_le f t " ] )

f i g , axes = p l t . subp lo t s ( nrows=1, nco l s =2, f i g s i z e =(12 , 6 ) )
hue_order=[ 'Head ' , "Ear_le f t " , "Ear_right " ]
sns . s c a t t e r p l o t ( ' x ' , ' y ' , data=mouse_df , hue=' c l u s t e r ' , ax=axes [ 0 ] ,
hue_order=hue_order )
axes [ 0 ] . s e t_ t i t l e ( " Or i g i na l ␣Dataset " )
sns . s c a t t e r p l o t ( ' x ' , ' y ' , data=mouse_df , hue='EM␣ c l u s t e r i n g ' , ax=axes [ 1 ] ,
hue_order=hue_order )
axes [ 1 ] . s e t_ t i t l e ( "EM␣Clus t e r i ng " )
f i g . t ight_layout ( )

conf_table = confusion_matrix (mouse_df [ " c l u s t e r " ] , mouse_df [ "EM␣ c l u s t e r i n g " ] )
d i sp = Confus ionMatr ixDisplay ( confusion_matrix=conf_table ,
d i sp l ay_ labe l s =[ ' Ear_le f t ' , "Ear_right " , "Head" ] )
d i sp . p l o t ( )

# v e r i f y the l a b e l s are co r r e c t in the confus ion matrix
(mouse_df [ "EM␣ c l u s t e r i n g "]=="Ear_le f t " ) .sum( )

num_correct = np .sum(np . d iag ( conf_table ) )
t o t a l = np .sum( conf_table )
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accuracy = ( num_correct/ t o t a l )∗100
accuracy

Cov o f EM app l i ed to mouse data

# Here we can see how the EM algor i thm as s i gn s c l u s t e r s to po in t s
#based on what the p r o b a b i l i t y i s t h a t they are w i th in each c l u s t e r .

def drawbands2 ( mean_list , cov_l i s t , c o l o r s , f i g ) :
i=0
for m, cv , c o l in zip ( mean_list , cov_l i s t , c o l o r s ) :

i f cv . shape == (2 , 2 ) :
U, s , Vt = np . l i n a l g . svd ( cv )
ang le = np . degree s (np . arctan2 (U[ 1 , 0 ] , U[ 0 , 0 ] ) )
width , he ight = 2 ∗ np . sq r t ( s )

else :
ang le = 0
width , he ight = 2 ∗ np . sq r t ( cv )

# Draw the E l l i p s e
for ns i g in range (1 , 4 ) :

f i g . add_patch ( E l l i p s e (m, ns i g ∗ width , n s i g ∗ height ,
angle , f c = c o l o r s [ i ] , a lpha = 0.15 ) )

i=i+1

test_df=pd . DataFrame (X)
test_df . columns=[ ' q0 ' , ' q1 ' ]
te s t_df_scores=pd . DataFrame ( s c o r e s )
test_df = pd . concat ( [ test_df , tes t_df_scores ] , ax i s=1)
#f ind which score i s c l o s e s t to 0
test_df [ 'EM␣ c l u s t e r i n g ' ] = test_df . i l o c [ : , 2 : ] . idxmax ( ax i s=1)
test_df [ " o r i g i n a l ␣ c l u s t e r s "]=mouse_df [ ' c l u s t e r ' ]

mu_gen , cov_gen=get_mu_cov_clusters ( c l u s t e r s )

mean_df=[ ]
for k in range ( len ( test_df ) ) :

l2norm=np . l i n a l g . norm(mu_gen [ int ( test_df [ 'EM␣ c l u s t e r i n g ' ] [ k ] ) ] )
mean_df . append ( l2norm )

test_df [ "EM␣mean␣norm"]=np . asar ray (mean_df )

#in order to sync co l o r s we f i nd the norms o f the o r i g i n a l and
#em means and rank them by t h e i r norms
#we then sync the co l o r to the norm
test_df [ 'EM␣ ranking ' ] = pd . f a c t o r i z e (−test_df [ "EM␣mean␣norm" ] ,
s o r t=True ) [ 0 ] + 1

#sync co lor s , w i l l on ly go up to 5 c l u s t e r s un l e s s more c o l o r s added

c o l o r s = [ ' purp le ' , ' green ' , ' orange ' , ' b lue ' ]
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#co l o r s f o r em
i n d e x l i s t = np . l i n a l g . norm(mu_gen , ax i s=1)
index l i s t 2_e =pd . f a c t o r i z e (− i nd e x l i s t , s o r t=True ) [0 ]+1
sub_array = np . asar ray ( c o l o r s ) [ i ndex l i s t 2_e ]
c o l o r s 3=sub_array . t o l i s t ( )
c o l o r s 3

f i g = p l t . subp lo t s ( nrows=1, nco l s =1, f i g s i z e =(6 , 6 ) )

ax=sns . s c a t t e r p l o t ( ' q0 ' , ' q1 ' , data=test_df , hue='EM␣ ranking ' ,
hue_order=index l i s t2_e , p a l e t t e= co l o r s 3 )
drawbands2 (mu_gen , cov_gen , co l o r s3 , f i g=ax )
ax . s e t_ t i t l e ( "EM␣Clus t e r i ng " )

#Em ranking corresponds to the c l u s t e r , but a l s o he l p wi th sync ing c o l o r s

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

GMM using sk l e a rn

from s k l e a rn . mixture import GaussianMixture
gmm = GaussianMixture ( n_components=n_clusters , random_state=0). f i t (X)

s t a r t = time . time ( )
l a b e l s = gmm. p r ed i c t (X)
end=time . time ( )
print ( "Execution ␣Time : " , end−s t a r t )

mouse_df [ " Sklearn " ] = mouse_df [ "EM␣ c l u s t e r i n g " ] . r ep l a c e ( [ "2" , "1" , "3" ] ,
[ 'Head ' , "Ear_right " , "Ear_le f t " ] )
mouse_df [ " Sklearn "]= mouse_df [ " Sklearn " ] . r ep l a c e ( [ "0" , "2" , "1" ] ,
[ 'Head ' , "Ear_right " , "Ear_le f t " ] )
mouse_df

f i g , axes = p l t . subp lo t s ( nrows=1, nco l s =2, f i g s i z e =(12 , 6 ) )
hue_order=[ 'Head ' , "Ear_le f t " , "Ear_right " ]
sns . s c a t t e r p l o t ( ' x ' , ' y ' , data=mouse_df , hue=' c l u s t e r ' , ax=axes [ 0 ] ,
hue_order=hue_order )
axes [ 0 ] . s e t_ t i t l e ( " Or i g i na l ␣Dataset " )
sns . s c a t t e r p l o t ( ' x ' , ' y ' , data=mouse_df , hue='EM␣ c l u s t e r i n g ' , ax=axes [ 1 ] ,
hue_order=hue_order )
axes [ 1 ] . s e t_ t i t l e ( "EM␣Clus t e r i ng " )
f i g . t ight_layout ( )

conf_table = confusion_matrix (mouse_df [ " c l u s t e r " ] , mouse_df [ " Sklearn " ] )
d i sp = Confus ionMatr ixDisplay ( confusion_matrix=conf_table ,
d i sp l ay_ labe l s =[ ' Ear_le f t ' , "Ear_right " , "Head" ] )
d i sp . p l o t ( )

num_correct = np .sum(np . d iag ( conf_table ) )
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t o t a l = np .sum( conf_table )
accuracy = ( num_correct/ t o t a l )∗100
accuracy
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